syms beta alpha L L2 x gamma real
g = 0.85;
Kt = 2.65;
E = 19e9;
b = 1/4*0.0254;
l = 8e-2;
l2 = 15e-2;
h = 0.5e-2;
I = b*h^3/12;
K = 4*g*Kt*E*I/l2;
eq1 = L/sin(beta) == gamma*L2/sin(alpha+beta);
eq2 = L/sin(beta) == ((gamma*L2 - L) + x)/sin(alpha);
sol = solve([eq1, eq2], [beta, alpha]);
a = subs(abs(sol.alpha), [L, L2, gamma], [l, l2, g]);
b1 = subs((sol.beta(1)), [L, L2, gamma], [l, l2, g]);
b2 = subs((sol.beta(2)), [L, L2, gamma], [l, l2, g]);
a_func = matlabFunction(a)
b1_func = matlabFunction(b1)
b2_func = matlabFunction(b2)
dx = 0.001;
xspan = 0:dx:2*l-dx;
th = b1 + a ;
th_func = matlabFunction(th);
hold off;
plot(xspan, th_func(xspan))
hold on
[~,bound] = max(th_func(xspan));
xspan1 = 0:dx:xspan(bound);
xspan2 = xspan(bound)+dx:dx:2*l-dx;
Theta = [max(th_func(xspan1)), max(pi-th_func(xspan2))];
Theta_func = @(xq) interp1(xspan,Theta, xq) ;
U = @(x) K.*b1_func(x).^2/2
F = @(x) K.*b1_func(x)
Fx = @(x) F(x).*cos(Theta_func(x))
Kx = @(x) -diff(Fx(xspan))
hold off;
figure;
plot(xspan, U(xspan))
xlabel('x')
ylabel('Energy (J)')
figure;
plot(xspan, Fx(xspan))
xlabel('x')
ylabel('Force (N)')
figure;
plot(xspan, abs(F(xspan).*l2.*(h/2)./I./2).*10^(-9))
xlabel('x')
ylabel('bending stress (GPa)')
figure;
plot(xspan(1:end-1), Kx(xspan))
xlabel('x')
ylabel('Stiffness (N/m)')